Δευτέρα, 13 Σεπτεμβρίου 2010

Η "λογική" του Αριστοτέλη

Μία καινούρια λέξη που εμφανίζεται στα φετινά βιβλία της Άλγεβρας Α΄ Λυκείου, είναι η λέξη "λογική".

Η "Λογική" ως κλάδος των Μαθηματικών, αναπτύχθηκε πολύ πρόσφατα, τα τέλη του 19ου αιώνα. Όμως, τα λογικά παράδοξα φαίνεται πως ήταν ένα από τα αγαπημένα θέματα της αρχαιότητας. Αλλά και οι "κοινές έννοιες" του Ευκλείδη, είναι αληθείς προτάσεις σε ένα αξιωματικό σύστημα.

Σήμερα αναγνωρίζουμε πως τα θεμέλια της λογικής τα έθεσε ο Αριστοτέλης, όπως αναφέρεται χαρακτηριστικά και στο κείμενο εδώ (σελ. 3 και εξής) από την Εστία Επιστημών Πάτρας.

Για να πάρουμε όμως μια γεύση της λογικής του Αριστοτέλη, θα δώσω τον λόγο στον ειδικό, τον συνάδελφο Βαγγέλη Σπηλιωτάκη. Σε σχόλιό του στο άρθρο μου "Ο Αριστοτέλης και ο Πλάτωνας για τη γνώση" έγραψε ένα κείμενο, βαθύ και επιστημονικά τεκμηριωμένο, αλλά με τρόπο απλό, ώστε να γίνεται κατανοητό από όλους και κυρίως εμένα. Τον ευχαριστώ ιδιαίτερα και για το κείμενο, αλλά και για συγκατάθεσή του σ' αυτήν την δημοσίευση.

"....
Αναφορικά με τον Αριστοτέλη και την θεωρία του για την γνώση, τα τελευταία χρόνια οι περισσότεροι υποστηρίζουν ότι εντάσσεται στην παράδοση της ορθολογικότητας μάλλον παρά του εμπειρισμού.

Αυτό γιατί -όπως το καταλαβαίνω εγώ- ακολουθεί την παράδοση που θεωρεί ότι τα φαινόμενα έχουν αιτίες που δεν ανήκουν στον κόσμο των φαινομένων. Σωστά αναπτύσσει το θέμα της η μεταπτυχιακή που παραπέμπεις για τον τρόπο που σχηματίζονται οι γενικές έννοιες, με βάση την επανάληψη της ίδιας παράστασης ενός αντικειμένου και με την παραδοχή ότι δεν υπάρχουν προϋπάρχουσες έννοιες στον νου όπως δέχεται ο Πλάτωνας .

Παράλληλα όμως θεωρεί ότι οι αιτίες των φαινομένων και οι αρχές της επιστήμης μας γίνονται οικείες και κατανοητές με τη λογική ανάλυση. Παράδειγμα ο ορισμός του συνεχούς: "συνεχές είναι το μέγεθος που μπορεί να διαιρείται σε πάντοτε διαιρετά μέρη" γιατί δεν αποτελείται από άτομα μέρη.

Για τούτο πολέμησε την ατομική θεωρία του Δημόκριτου γιατί δεχόταν την πεπερασμένη διαιρετότητα της ύλης μέχρι το άτομο.

Στον ορισμό αυτό κατέληξε όχι με βάση την κοινή εμπειρία για την πεπερασμένη διαιρετότητα της ύλης αφού κανείς μας δεν έχει εμπειρία άπειρης διαιρετότητας αλλά με βάση την λογική επεξεργασία των παραδόξων του Ζήνωνα για τα παράδοξα που θα προκύπτουν από την παραδοχή της πεπερασμένης διαιρετότητας των μεγεθών. Χρησιμοποιεί συνεχώς την μέθοδο της απαγωγής σε άτοπο για να καταλήξει στον ορισμό. Αυτά αναπτύσσονται στο βιβλίο Ε της φυσικής του που έχει σαν θέμα του μόνο την έννοια του συνεχούς.

Με λίγα λόγια αποδέχεται την άπειρη διαιρετότητα των μεγεθών και της ύλης γιατί εκεί τον οδηγεί η λογική ανάλυση αν και δεν έχουμε καμιά εμπειρία για αυτό.

Επίσης πρέπει να λάβουμε υπόψιν μας ότι στον όρο εμπειρία ο Αριστοτέλη εντάσσει και την γνώση που αποκτούμε από την μελέτη άλλων θεωριών με την έννοια ότι δεν ξέραμε κάτι και το μάθαμε και από την επεξεργασία αυτής της γνώσης μπορούν να προκύπτουν νέα δεδομένα. Σε κάποιο χωρίο γράφει ότι άλλη εμπειρία του τριγώνου έχει αυτός που ξέρει ότι το άθροισμα των γωνιών του είναι 180 μοίρες και άλλη αυτός που δεν το ξέρει. Θεωρεί δηλαδή ότι η προϋπάρχουσα γνώση επιδρά και διαμορφώνει ακόμα και αυτό που βλέπουμε γιατί στο αντικείμενο βλέπουμε και αυτά που ξέρουμε για το αντικείμενο.

Αυτά σκέφθηκα σαν μια πρώτη προσέγγιση σε ένα θέμα που απασχόλησε πολύ την αρχαία σκέψη και συνεπώς και την νεώτερη αφού μας γίνεται ολοένα και περισσότερο κατανοητό ότι οι καταστατικές αρχές του δυτικού πολιτισμού έχουν τεθεί εκεί. Αρκεί να σκεφτούμε από μαθηματικής σκοπιάς το ρόλο που έπαιξε το πρόβλημα του τετραγωνισμού του κύκλου και η μέθοδος της εξάντλησης στην ανάπτυξη των μαθηματικών."